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KOCHIN—LOITSYANSKII METHOD IN FREE CONVECTION PROBLEMS

Yu., A. Sokovishin and A. G. Semenov UDC 536.25

Freely convective heat transfer is computed by the Kochin—Loitsyanskii method
on a vertical plate whose temperature is variable.

Integral methods used for approximate computations of freely convective heat transfer
are based on the approximation of the exact velocity and temperature profiles in the bound-
ary layer on polynomials or other functions (exponentials, for instance). The boundary-
layer "thickness" and longitudinal velocity scale introduced provisionally are determined
from the solution of the integral equations. A method using a particular class of exact
solutions, a one-parameter family of self-similar profiles [l], exists in boundary~layer
theory. A strictly defined quantity, the thickness of the momentum loss, which is a func-
tional of the solution of the boundary-layer equations, is used as the scale of the trans-
verse coordinate. We use this idea to compute freely convective heat transfer.

Let us consider free convection on a vertical plate with a given wall temperature #y.
We assume that the energy dissipation and work of compression are negligibly small, Inte-
gral equationsin a freely convective boundary layer have the form [2]

o o0

d Suzdy=gﬁ (ﬁdy——v ou ,

dx 3 0 Oy =0
® D

4 (ugdy=—_"_ 08|

dx 3§ Pr  dy ly=o

Let us introduce the transformation scale
huyz(fuﬁ@OQ/(ﬁigu%y>’
) b

(2)

U(x) =9, | #dy / (ubdy, z=nv
0 B

and substituting dimensionless functions in the equations, we obtain
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TABLE 1. Results of Computations of the Self-Similar Prob-

lem
mo | Y f f ' F | G | Q i »
—0,6 1,0712 —1,4000 1,8667 0,4667 0,0001 2,2570
—0,55 | 0,9513 | —1,0198 | 1,4371 0,4172 0,0810 1,7668
—0,5 | 08589 | —0,7587 | 1,1381 0,3794 0,1397 1,4344
—0,45 | 0,78% | —0,5720 | 0,9216 0,3496 0,1668 1,1986
—0.4 | 0.7261 | —0,4341 | 07507 0,3256 | 01899 1,0245
—0,35 | 0.6769 | —0,3294 | 06352 0,3058 0,2058 0,8923
—0,3 | 0,635 | —0,2480 | 10,5373 0,893 0,2169 0,7891
—0,2 | 05700 | —0,1317 | 03951 0,2634 0,2304 0,6408
01 | 055200 | —0,0842 | 0,2981 0,2439 0,2371 0,5395
0 0,4809 0 0,2288 0,2288 0,2402 0,4676
0,2 0,4235 0,0690 | 0,1380 0,2070 0,2414 0,3730
0.4 0,3832 0,1097 | 0,0823 0,1919 0,2400 0,3146
0.6 0,3532 01357 | 0,0452 0,1810 0,2374 0,2752
0.8 0,3300 0,153 | 0,0192 0,1726 0,2348 0,92473
1,0 0,3114 0,1661 0 0,1661 0,2324 0,2264
1,2 0,291 0,175¢ | —0,0146 | 0,1608 0,2301 0,2103
1,4 0,2832 0,1825 | —0,02%61 | 10,1565 0.2280 0,1973
1,6 0,2793 0.1881 | —0,0353 | 0,1528 0,2261 0,1871
2,0 0,2545 0,1961 | —0,0490 | 0,1471 0,229 01712
2,4 0,2406 0.2015 | —0,0588 | 0,1427 0,9202 0,1597
3,0 0,2246 0.2069 | —0,0690 | 0,1379 0,2170 0,1476
5,00 | 0,1920 0,2150 | —0,0860 | 0,1290 0,2105 0,1264
10,0 | 0,1565 0,2202 | —0,0991 | 0,1211 0,2056 0,1090
v & =F=~2[2f+PY9d?1+—2—~ ) _ % ]
dx - > Pr 0n fam0 0% fn=o
] 3)
e U _Gojipfean+ LB % |
dx i Pr 0y |p=c 07

where f = (Uz/dyw)ddy/dx; p=gBsyz/U.

We use a one-parameter family of self-similar solutions for a power-—law change in the
wall temperature [3] to approximate the velocity and temperature profiles. An exponent m
in the law of surface temperature variation 4 =Ax® is the parameter. The scales U* and
h* of the self-similar problem are known functions of X:

—1/4
Ur= 2 (4Ge) 2, b= x(—%rf—) . )

Let us relate the parameter m in this fam1ly to the form factor f introduced. From
(2) and (3) we find

U = U*n(m), h=N¥yp(m), f(m)= 4muy?, p(m)=v?*/x, (5)

F(m) — 2(l — m)uy?,  G(m) = 2(1 4 m)xy?,
where

A(m) = a\:(p*zdn* / T@*@*dn*; V(m) — (T(p*e*dn*\Q/ ECP*ZdTl*-
0 0 ; ) |

The set of formulas obtained can be considered the parametric definition of U, h, p,
G, and F as functions of f by using the parameter m.

Results of computations of the self-similar problem for Pr=0.7 are represented in
Table 1. We use it to eliminate the parameter m. Substituting the functions F(f) and G(f)
determined from the solution of the self-similar problem into system (3), we obtain two

ordinary differential equaticns. The solution of this system determines U(x), z(x), and
f(x).

The dimensionless heat-elimination coefficient for the Q(f)=-—y(38*/3n*)n*=o known
from the self-similar problem is given by the relationship
Nu 6
]?4 — (-‘// X« dﬁ ldx (,‘) >! . ( )
p(f) fﬁ F=F(x)
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Fig, 1. Comparison of the results
of computations and an experiment on
‘the heat elimination on a vertical
surface with a sinusoidal change in
the wall temperature: 1) this
method; 2) the local self-similarity
method [5, 6]; 3) a numerical com-—
putation [7]; 4) experimental data

[4].

The initial conditions for system (3) follow from the self-similar problem in the
neighborhood of the leading edge with the parameter mo, whosemagnitude is determined from
the condition

1im §, (x)/x™e= const 5% 0.
x-0

The most complete experimental and computational data on free convection in air on a
plate with a sinusoidal change in the wall temperature $y=Asinmx [4-7] are available.
In this case mo=1. As follows from (4), (5), and (6), a passage to the limit is possible

for x+0 N 1 1 06*
bl = (=0 Yoo, = (777 ) ”
Gry" o ( V2 ( ifih \VZ 00* himo! bnmm,

Data obtained by the Kochin—Loitsyanskii method are compared with known numerical and
experimental results on the local value of the heat-elimination coefficient in the figure.
We see their good agreement. The local self-similarity method [5, 6] yields worse agreement
with the numerical computation results, which is a consequence of the difference in the
scale selection., In the local self-similarity method they are determined from the surface
temperature distribution and are not related to the solution of the boundary-layer equations.
As follows from (2), the scales h and U are defined as functionals of the solution of the
boundary-layer equations, which implies the necessity to solve the ordinary differential
‘equations (3). The existence of such "feedback" between the velocity and temperature distri-
bution in the boundary layer and the scales is the advantage of the method proposed.

NOTATION

X, y, longitudinal and transverse coordinates; u, longitudinal velocity component; T,
temperature; 4 =T — T, excess temperature; v, coefficient of kinematic viscosity; a, ther-
mal conductivity coefficient; g, acceleration due to gravity; R, coefficient of volume
expansion; U, h, velocity and transverse coordinate scales; n=y/h, ¢=u/U, 6=4¢/dy, dimen-
sionless coordinate and functions; m, an exponent; ®, y, scale coefficients; Pr=v/q, Prandtl
number; Grx = gBdyx’/v?, Grashof number; Nuy = axx/\, Nusselt number. Subscripts: w, magni-
tude on the wall; =, at a large distance from the wally *, in the self-similar problem; O,
initial value or leading edge.
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MOTION OF A THERMAL WAVE FRONT IN A
NONLINEAR MEDIUM WITH ABSORPTION

I. S. Granik and L. K. Martinson UDC 536.24

We study the evolution of a thermal perturbation in a nonlinear medium whose ther-
mal conductivity depends on the temperature and the temperature gradient according
to a power law.

We consider an incompressible medium whose thermal conductivity depends on the tempera-
ture and temperature gradient according to the power law

k== hkou®lgradul®, o, o = const>0.

Such a model of a medium, withgeneralization of the models used in the theory of nonlinear
heat conduction [1}, wasvalidated in [2] from the point of view of kinetic theory as a
model of a medium with a finite relaxation time,

As follows from the results of [3], thermal perturbations in such a medium, unlike a
medium with constant thermal conductivity, can be generalized to the form of thermal waves
with finite velocity of displacement of the fronts. Below, we study the features of the
motion of thermal wave fronts from an instantaneous point source of heat in the presence
in a given nonlinear medium of volume absorption of thermal energy, the intensity of which
‘depends on temperature according to a power law. Such absorption of thermal energy can be
caused by processes of ionization and radiation in a high-temperature medium [1, 4],

The corresponding process of propagation of heat is described by a Cauchy problem for
the quasilinear parabolic equation

O @ 0 [ ieyye| 9-“—) —Mw, 10, >0,
ot -t dx dx Ox
u (0, x) = Qb (x%). (1

Here Qo is the energy of a point thermal source at the initial time; Il =const >0 is the
coefficient of absorption, and s=1, 2, and 3 for the cases of plane, axial, and central
symmetries of the problem, respectively. Below, without loss of generality, we assume a*=1,
since by the choice of the time scale we can always reduce (1) to such form,

‘ For certain values of the exponent v in the lowest term of the equation we can find
exact analytical solutions of the problem (1). An analysis of these solutions shows that
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